RESEARCH ARTICLE | JANUARY 06 2011

Increase in the magnitude of the energy barrier distribution in Ni nanoparticles due to dipolar interactions

S. H. Masunaga; R. F. Jardim; R. S. Freitas; J. Rivas

+ Author & Article Information

Appl. Phys. Lett. 98, 013110 (2011)

https://doi.org/10.1063/1.3533911

Article history ©

The energy barrier distribution E_b of five samples with different concentrations x of Ni nanoparticles using scaling plots from ac magnetic susceptibility data has been determined. The scaling of the imaginary part of the susceptibility $\chi''(\nu,T)$ versus

shape and size. The mean value $\langle E_b \rangle$ increases appreciably with increasing x, or more appropriately with increasing dipolar interactions between Ni nanoparticles. We argue that such an increase in $\langle E_b \rangle$ constitutes a powerful tool for quality control in magnetic recording media technology where the dipolar interaction plays an important role.

Topics

Magnetic anisotropy,

Magnetic devices, Magnetic
susceptibility, Powder
diffraction,
Electromagnetism, Magnetic
fields, Quality assurance,
Sol-gel process,
Transmission electron
microscopy, Nanoparticle

© 2011 American Institute of Physics.

You do not currently have

access to this content.

Sign in

Don't already have an account? Register

Sign In Username Password I'm not a robot reCAPTCHA Privacy - Terms Reset password Register

Sign in via your Institution

Sign in via your Institution

>

Pay-Per-View Access \$40.00

₩ BUY THIS ARTICLE